
Ground Software Technologies – Embracing Change:

Mission Drivers and Technology Opportunities to

Enable Long Lived Missions

Brian J. Giovannoni

Jet Propulsion Laboratory / California Institute of Technology

SpaceOps May 18 - June 1 2018, Marseille, France

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

2

Agenda

• Take Away

▪ Containerization and Continuous Integration can:

– Support managing older software - improving maintainability

– Allow for change (e.g. patches, OS updates, address security vulnerabilities,

infrastructure) – evolving the system

– Reduce testing costs in operations – do more with less

▪ Plan for maintenance and change for the entire mission lifecycle

• Introduction

• Containerizing Software – improving maintainability

• Continuous Integration Approach

▪ Evolving the system

▪ Do more with less

• Summary

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

Introduction

• Containerization (defined)

▪ A container is a stand-alone, executable image bundling
software (an application) and everything needed for it to
run.

• Continuous Integration (defined)

▪ Continuous Integration (CI) is a derivative of agile
software development practices in which developers
continually check in code for a nightly build process.

▪ Builds are regularly run against automated regression
testing and integration problems addressed very
frequently.

3

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

Introduction – Enabling Technologies

Technology Reference

Artifactory A development tool that supports binary management, works with

different software package management systems, and easily

integrates into a continuous integration workflow

URL: https://jfrog.com/artifactory/

Jenkins An open source automation server that supports building, deploying

and automating development projects

URL: https://jenkins.io/

Software

Repositories

GIT / GITHUB

SVN

CVS

YUM – Yellowdog

Updater Modified

A package installer/remover used for Redhat Package Managed

systems

URL: http://yum.baseurl.org/ 4

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

Introduction – Docker (50K View & Best Practices)

• Put very simply – Docker is an application level virtual engine
▪ Provides an environment for applications to execute (container)

▪ Contains application binaries and system libraries need to run

▪ Storage access is provided by container as needed by the application

• What types of applications are best for Docker?
▪ Daemon processes

▪ Pipeline processes

▪ Background jobs

▪ Minimal or no command line interface

• Docker is not:
▪ A full virtual machine

▪ Not well suited for GUI based applications

▪ Not meant for real-time . Hard real-time applications

URL: https://www.docker.com/what-docker

5

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

Containerizing Software – Improving Maintainability (1)

6

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Package only what you

need – maintainable

bundles

• Version control templates

– know what you have /

back out changes

• Software comes from

sanctioned sources

• Privileged access is not required

▪ Any user can instantiate a

Docker image / container

Artifactory / Docker Registry

Soft Repo
Software Name/Ver

Software 1.0 Software 1.1 Software 1.2

MGSS YUM Repo

Sys-Cur 3.0 Sys-Cur 3.0.1 Sys-Cur 3.1

Vendor Repo
OS Package Name/Ver

Pkg 1 Pkg 2 Pkg 3

Docker App Template

Artifactory / Docker Registry
OS Image Names

OS Base

Docker Working Dir
Tarball, RPM, Etc.

tomcat 7

setup.py

resolv.conf

mydir.tar

OS Base
Patch 1

OS Base
Patch nnn

Docker Image /
Subsys / Elem App

Image

Docker Build

Docker App Template
GitHub

Docker App Template

Param
ValueParam

Value

Param
Value

Param
Value

Param
Value

Containerizing Software – Improving Maintainability (2)

7

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Templates supports

▪ Defining

configurable

bundles

▪ Versioning

• Arguments allow

for:

▪ Automation

▪ Versioning

▪ Reuse

Containerizing Software – Improving Maintainability (3)

8

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Docker containers allow for:
▪ Application isolation - maintainability

– Runtime environment is consistent on multiple platforms

– Isolate applications for security

▪ System dependencies - maintainability
– Breaks application in to modular bits containing only what is needed to execute

– Templates document application dependencies

▪ Minimal functionality
– Containerize applications and dependencies only

– Divide functionality in to individual processes

– Define and understand communications path between containers

▪ Templates can be versioned and used in automation workflows

▪ Agnostic containers - maintainability
– Bundle application and dependencies into a single object

– Abstract machine specific settings

– Applications can run on many different machines

– Avoid OS, version and kernel specific dependencies and references

▪ Note: Hardest change for a legacy system is to update to allow
agnostic containers

Artifactory / Docker Registry

Soft Repo
Software Name/Ver

Software 1.0 Software 1.1 Software 1.2

MGSS YUM Repo

Sys-Cur 3.0 Sys-Cur 3.0.1 Sys-Cur 3.1

Vendor Repo
OS Package Name/Ver

Pkg 1 Pkg 2 Pkg 3

Docker App Template

Artifactory / Docker Registry
OS Image Names

OS Base

Docker Working Dir
Tarball, RPM, Etc.

tomcat 7

setup.py

resolv.conf

mydir.tar

OS Base
Patch 1

OS Base
Patch nnn

Docker Image /
Subsys / Elem App

Image

Docker Build

Docker App Template
GitHub

Docker App Template

Param
ValueParam

Value

Param
Value

Param
Value

Param
Value

Continuous Integration Approach – Evolving the System (1)

9

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Automate application builds
▪ Daily builds reduce application integration efforts

– Note: once teams get into a regular battle rhythm

▪ Builds stored in Artifactory
– Provides versions traceable to requirements updates

» Bug fixes / new requirements manages in Jira

• Automate unit tests
▪ Application builds, test cases, test data and test results stored

together

• Testing
▪ On premise – in dedicated test servers

▪ Amazon Web Services (AWS)
– Amazon Elastic Container Service (ECS)

• Binary versioning
▪ Artifactory stores application versions and test results

• Evolving the system
▪ Applications built frequently - OS, third party software

dependency patching and integration testing

Jenkins Job / Pipeline Job

Artifactory/ Docker Registry

Docker Image /
Base OS

Docker Image /
OS Patch 1 Base

App1 Docker
Template

Docker Build

Docker App1 Img /
(OS Patch 1 Base)

Docker App1 Img /
(OS Patch 1 Base)

Jenkins Agent
- OS image ver
- App1 Dependencies
- App1
... Te

m
pl

at
e

P
a

ra
m

e
te

rs

Docker Template
GitHub

App1 Docker
Template CO

Jenkins App1
Trigger

Jenkins Job /
Pipeline Report

Jenkins Job / Pipeline
Unit Test

Successful
Build/Test
Bundling

Artifactory / Docker Registry

Docker App1 Img /
(OS Patch 1 Base)

Docker App1 Container /
(OS Patch 1 Base)

App1
Unit Test

Build

Test

Arguments

Templates

Continuous Integration Approach – Evolving the System (2)

10

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Automating “system test”
▪ Capitalize on application level build and test

– Depending on need unit tests can be re-run

▪ Test subsystem interfaces
– Data flow

▪ System thread tests
– Performance requirements

– Security requirements

– System level requirements testing end-to-end

Jenkins Job / Pipeline

Subsys/Elem 1 Docker
Workflow
(SIS APP1)

Subsys/Elem 2 Docker
Workflow
(SIS APP2)

Subsys/Elem nnn Docker
Workflow

(SIS APP-nnn)
Artifactory/ Docker

Registry

Subsys/Elem 1
Docker Image

**

Subsys/Elem 2
Docker Image

**

Subsys/Elem nnn
Docker Image

Docker Engine

Orchestrator

Subsys/Elem 1
Container

**

Subsys/Elem 2
Container

**

Software Interface
Spec Testing

Failed SIS Test

Failed SIS Test

Subsys/Elem 1 Success
Jenkins Log

Subsys/Elem 2 Success
Jenking Log

Full/Partial
Successful SIS

Test

Full/Partial
Successful SIS

Test

Continuous Integration Approach – Evolving the System (3)

11

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Integrate and automate containerize with non-containerized applications

• Evolving the system
▪ Automated thread tests support identifying a single application update

– Reduce the need for lengthy Integration Test & Deployment cycles – support smaller teams (especially in operations)

▪ Change deployment models for containerize applications

System Jenkins Job / Pipeline

Artifactory/ Docker
Registry

Subsys/Elem 1
Docker Image

**

Subsys/Elem 2
Docker Image

**

Subsys/Elem nnn
Docker Image

Docker Engine

Orchestrator

Subsys/Elem 1
Container

**

Subsys/Elem 2
Container

**

Sys 1 Docker
Image

Sys nn Docker
Image

Sys 1 Container

Sys S/W 1 Sys S/W 2

Sys S/W 3

Sys S/W 4

Continuous Integration Approach – Evolving the System (4)

12

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Evolving the system
▪ Patching the system (OS / 3rd Party)

– Updates to the system can be applied and tested

without impacting application development cycles

– Roll back on thread test failure

ASIS GitHub

ASIS Artifactory / Docker Registry

Base OS Dockerfile OS Patch 1 Dockerfile OS Patch nnn Dockerfile

Docker
Image /
Base OS

Docker Build Docker Build Docker Build

Docker
Image /

OS Patch 1
Base

Docker
Image /

OS Patch
nnn Base

Base OS
Dockerfile

OS Patch1
Dockerfile

OS Patch nnn
Dockerfile

COCOCI CI CI

Patch 1
Patch
nnn

Summary

13

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

• Plan for maintenance and change for the entire mission
lifecycle
▪ Automation alone is insufficient

▪ Missions need to adopt a culture and willingness for change

▪ Automation and good process introduced in development and
continued thru operations builds trust

• Containerization
▪ Modularize system components for improved maintainability

– Supports an agility in deployment approaches

– Allows for isolation of functions

– Manage change in smaller well defined objects

• Continuous Integration
– Allow for automated change (e.g. patches, OS updates, address security

vulnerabilities, infrastructure)

– Reduce testing costs in operations

Questions?

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. 14

Thank You!

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. 15

16

